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hfhd Documentation

hfhd is an accelerated Python library for estimating (integrated) covariance matrices with high frequency data in high
dimensions. Its main focus lies on the estimation of covariance matrices of financial returns. This is a challenging task
since high frequency data are observed irregularly (and non-synchronously across assets) and are contaminated with
microstructure noise. The hf module provides a collection of tools for synchronization and noise reduction.

When many assets are considered relative to the sample size, we say that the covariance matrix has high dimension.
Then, sample eigenvalues are overdispersed relative to the population eigenvalues due to the curse of dimensionality.
This overdispersion leads to an ill-conditioned covariance matrix estimate. The hd module provides tools to improve
the condition of the matrix.

Loss functions in the lossmodule help to judge the performance of covariance estimators. The sim module provides
a Universe class with which heavy tailed, noisily and irregularly observed, high dimensional asset returns with an
underlying factor model can be simulated.

To install hfhd run

$ pip install hfhd

If you experience problems with the parallelism, you may need to install/upgrade the Threading Building Blocks
(TBB). The easiest way is to

$ conda install tbb

CONTENTS 1
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CHAPTER

ONE

THE PRICE PROCESS

The library assumes the following standard model. Let
(︁

Ω,ℱ , {ℱ𝑡}0≤𝑡≤𝑇 ,P
)︁

be a filtered probability space on

which the log-price process of the 𝑝 assets under study, {X𝑡}0≤𝑡≤𝑇 , is adapted, where X𝑡 =
(︁
𝑋

(1)
𝑡 , . . . , 𝑋

(𝑝)
𝑡

)︁′
.

It is assumed that X𝑡 follows a diffusion process satisfying $$ d \mathbf{X}_{t}=\boldsymbol{\mu}_{t} d
t+\boldsymbol{\sigma}_{t} d \mathbf{W}_{t}, \quad t \in[0,T]. $$

The process {W𝑡} is a 𝑝-dimensional standard Brownian motion. The drift 𝜇𝑡 ∈ R𝑝 and the volatility 𝜎𝑡 ∈ R𝑝×𝑝

are càdlàg. Analogously to the covariance matrix in the low frequency setting, the integrated covariance matrix
over the interval [𝑎, 𝑏] ⊂ [0, 𝑇 ], is defined as $$ \boldsymbol{\Sigma}(a, b)=\int_{a}^{b} \boldsymbol{\sigma}_{t}
\boldsymbol{\sigma}_{t}^{\prime} dt $$ The log-price of each asset is observed at discrete times and with market
microstructure noise. The set of observation times of asset 𝑗 is denoted as 𝑡(𝑗) = {𝑡(𝑗)0 ≤ 𝑡

(𝑗)
1 ≤ . . . ≤ 𝑡

(𝑗)

𝑛(𝑗)}.
Importantly, observation times are non-synchronous across assets, i.e., 𝑡(𝑗) ̸= 𝑡(𝑘) for 𝑗 ̸= 𝑘 in general. Furthermore,
the concentration ratio 𝑐𝑛 = 𝑝/𝑛 is not a small number. The observed log-price process of asset 𝑗 is \begin{equation}
\label{eqn:obs} {Y_t^{(j)}}={X_t^{(j)}}+{\epsilon_t^{(j)}}, \quad t \in t^{(j)}, \end{equation} where 𝜖(𝑗)𝑡 is a noise
process independent of X𝑡 with mean 0. {𝜖𝑡}0≤𝑡≤𝑇 is assumed to be adapted to {ℱ𝑡}0≤𝑡≤𝑇 . Hence, the observed

price process
{︁
𝑌

(𝑗)
𝑡

}︁
0≤𝑡≤𝑇

is also adapted. The microstructure noise is the resulting process of an interplay of

many effects. Among them are for example price discreteness and the bid–ask bounce. When the interest lies on
the integrated covariance matrix of the underlying return process, it is important to account for the variance due to
the noise process. When the observation frequency is high, the variance due to the the noise process dominates the
variance of the underlying process and estimators that do not cancel the noise are severely biased.

Note: Accelerated functions are compiled Just In Time (JIT). This may cause the first call to be several orders of
magnitude slower than the following calls.
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CHAPTER

TWO

DESIGN PHILOSOPHY

hfhd is written with the following priciples in mind:

• Thorough and notationally consistent documentation, explaining not only the code but also the theory behind it.

• The code needs to run sufficiently fast to be usable. Since many functions are inherently iterative, JIT compila-
tion with Numba is used throughout to speed things up.

• The API should be user friendly with consistent inputs and outputs.

2.1 hfhd

2.1.1 hf Module

The hf module provides functions for synchronization of asynchronously observed multivariate time series and obser-
vation noise cancelling. When possible, functions are parallelized and accelerated via JIT compilation with Numba.
By default all cores of your machine are used. If your pipeline allows for parallelization on a higher level, it is prefer-
able to do so. You may manually set the number of cores used by setting numba.set_num_threads(n). Every
estimator takes tick_series_list as the first argument. This is a list of pd.Series (one for each asset) containing
tick log-prices with pandas.DatetimeIndex. If you want to comute the covariance of residuals after predictions are
subtracted from log-returnsjust cumsum the residuals. The output is the integrated covariance matrix estimate as a 2d
numpy.ndarray.

Functions

ensemble(estimates, var_weights, cov_weights) Ensemble multiple covariance matrix estimates with
weights given by var_weights and cov_weights
for the diagonal and off-diagonal elements, respectively.

gamma(data, h) The h-th realized autocovariance.
get_bandwidth(n, var_ret, var_noise, kernel) Compute the optimal bandwidth parameter $H$ for

krvm() according to Barndorff-Nielsen et al.
get_cumu_demeaned_resid(price[, y_hat]) From a pd.Series of tick prices and predictions get a

pd.Series of tick log-prices with zero-mean returns, i.e.
hayashi_yoshida(tick_series_list[, theta, k]) The (pairwise) Hayashi-Yoshida estimator of Hayashi

and Yoshida (2005).
krvm(tick_series_list, H[, pairwise, kernel]) The kernel realized volatility matrix estimator (KRVM)

of Barndorff-Nielsen et al.
mrc(tick_series_list[, theta, g, . . . ]) The modulated realised covariance (MRC) estimator of

Christensen et al.
continues on next page
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Table 1 – continued from previous page
msrc(tick_series_list[, M, N, pairwise]) The multi-scale realized volatility (MSRV) estimator of

Zhang (2006).
parzen_kernel(x) The Parzen weighting function used in the kernel real-

ized volatility matrix estimator (krvm()) of Barndorff-
Nielsen et al.

preaverage(data[, K, g, return_K]) The preaveraging scheme of Podolskij and Vetter
(2009).

quadratic_spectral_kernel(x) The Quadratic Spectral weighting function used in the
kernel realized volatility matrix estimator (krvm()) of
Barndorff-Nielsen et.

refresh_time(tick_series_list) The all-refresh time scheme of Barndorff-Nielsen et al.
tsrc(tick_series_list[, J, K]) The two-scales realized volatility (TSRV) of Zhang et

al.

ensemble

hf.ensemble(estimates, var_weights, cov_weights)
Ensemble multiple covariance matrix estimates with weights given by var_weights and cov_weights for
the diagonal and off-diagonal elements, respectively. This function is used in the ensembled pairwise integrated
covariance (EPIC) estimator of Woeltjen (2020). The msrc() estimator , the mrc() estimator, the krvm()
estimator and the preaveraged hayashi_yoshida() estimator are ensembled to compute an improved finite
sample estimate of the pairwise integrated covariance matrix. The EPIC estimator uses every available tick, and
compares favorable in finite samples to its constituents on their own. The preaveraged HY estimates of the off-
diagonals have better finite sample properties than the other estimators so it might be preferable to overweight
them by setting the corresponding cov_weights element to a number >1/4.

Parameters

estimates [list of numpy.ndarrays with shape = (p, p)] The covariance matrix estimates.
var_weights : numpy.ndarray The weights with which the diagonal elements of the MSRC,
MRC, and the preaveraged HY covariance estimates are weighted, respectively. The weights
must sum to one.

cov_weights [numpy.ndarray] The weights with which the off-diagonal elements of the MSRC,
MRC, and the preaveraged HY covariance estimates are weighted, respectively. The HY
estimator uses the data more efficiently and thus may deserve a higher weight. The weights
must sum to one.

Returns

cov [numpy.ndarray] The ensemble estimate of the integrated covariance matrix.

gamma

hf.gamma(data, h)
The h-th realized autocovariance.

Parameters

data [numpy.ndarray, shape = (p, n)] An array of synchronized and demeaned log_returns. (e.g.
with refresh_time()).

h [int] The order of the autocovariance.

Returns

6 Chapter 2. Design Philosophy
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gamma_h [numpy.ndarray, shape = (p, p)] The h-th realized autocovariance matrix.

Notes

The h-th realized autocovariance is given by \begin{equation} \boldsym-
bol{\gamma}^{(h)}\left(\mathbf{Y}\right)= \sum_{s=h+2}^{n+1}\left(\mathbf{Y}(s)-\mathbf{Y}(s-
1)\right) \left(\mathbf{Y}(s-h)-\mathbf{Y}(s-h-1)\right)^{\prime}, \quad h \geq 0 \end{equation}
and \begin{equation} \boldsymbol{\gamma}^{(h)}\left(\mathbf{Y}\right)= \boldsymbol{\gamma}^{(-
h)}\left(\mathbf{Y}\right)^{\prime}, \quad h < 0, \end{equation} where Y denotes the synchronized
zero-return log-price.

get_bandwidth

hf.get_bandwidth(n, var_ret, var_noise, kernel)
Compute the optimal bandwidth parameter 𝐻 for krvm() according to Barndorff-Nielsen et al. (2011).

Parameters

n [int >0] The sample size.

var_ret [float > 0] The variance of the efficient return process.

var_noise :float >=0 The variance of the noise process.

Returns

H [int] The bandwidth parameter.

References

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A. and Shephard, N. (2011). Multivariate realised kernels:
consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous
trading, Journal of Econometrics 162(2): 149– 169.

get_cumu_demeaned_resid

hf.get_cumu_demeaned_resid(price, y_hat=None)
From a pd.Series of tick prices and predictions get a pd.Series of tick log-prices with zero-mean returns, i.e.
the reconstructed log-prices from de-meaned log-return residuals. These log-prices are inputs to the integrated
covariance matrix estimators.

Parameters

series [pd.Series] Tick prices of one asset with datetime index.

y_hat [pd.Series] The predictions.

Returns

out [pd.Series] Log-prices corresponding to zero-mean returns.

2.1. hfhd 7
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hayashi_yoshida

hf.hayashi_yoshida(tick_series_list, theta=None, k=None)
The (pairwise) Hayashi-Yoshida estimator of Hayashi and Yoshida (2005). This estimtor sums up all products
of time-overlapping returns between two assets. This makes it possible to compute unbiased estimates of the
integrated covariance between two assets that are sampled non-synchronously. The standard realized covariance
estimator is biased toward zero in this case. This is known as the Epps effect. The function is accelerated via
JIT compilation with Numba. The preaveraged version handles microstructure noise as shown in Christensen et
al. (2010).

Parameters

tick_series_list [list of pd.Series] Each pd.Series contains tick-log-prices of one asset with date-
time index.

theta [float, theta>=0, default=None] If theta=None and k is not specified explicitly, theta
will be set to 0. If theta>0, the log-returns are preaveraged with theta and 𝑔(𝑥) = 𝑚𝑖𝑛(𝑥, 1−
𝑥). Hautsch and Podolskij (2013) suggest values between 0.4 (for liquid stocks) and 0.6 (for
less liquid stocks). If theta=0, this is the standard HY estimator.

k [int, >=1, default=None] The bandwidth parameter with which to preaverage. Alternative
to theta. Useful for non-parametric eigenvalue regularization based on sample splitting.
When k=None and theta=None, k will be set to 1. If k=1, this is the standard HY
estimator.

Returns

cov [numpy.ndarray] The pairwise HY estimate of the integrated covariance matrix.

Notes

The estimator is defined as

⟨
𝑋(𝑘), 𝑋(𝑙)

⟩
𝐻𝑌

=

𝑛(𝑘)∑︁
𝑖=1

𝑛(𝑙)∑︁
𝑖′=1

∆𝑋
(𝑘)

𝑡
(𝑘)
𝑖

∆𝑋
(𝑙)

𝑡
(𝑙)

𝑖′
1{︁(︁

𝑡
(𝑘)
𝑖−1,𝑡

(𝑘)
𝑖

]︁
∩
(︁
𝑡
(𝑙)

𝑖′−1
,𝑡

(𝑙)

𝑖′

]︁
̸=∅

}︁, (2.1)

where

∆𝑋
(𝑗)

𝑡
(𝑗)
𝑖

:= 𝑋
(𝑗)

𝑡
(𝑗)
𝑖

−𝑋
(𝑗)

𝑡
(𝑗)
𝑖−1

denotes the jth asset tick-to-tick log-return over the interval spanned from

𝑡
(𝑗)
𝑖−1 to 𝑡(𝑗)𝑖 , 𝑖 = 1, · · · , 𝑛(𝑗).

and 𝑛(𝑗) = |𝑡(𝑗)| − 1 denotes the number of tick-to-tick returns. The following diagram visualizes the products of
returns that are part of the sum by the dashed lines.
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𝑡
(𝑘)
0 = 𝑡

(𝑙)
0 = 0

𝑡
(𝑘)
1 𝑡

(𝑘)
2 𝑡

(𝑘)
3 𝑡

(𝑘)
4 𝑡

(𝑘)
5

𝑇

𝑡
(𝑙)
1 𝑡

(𝑙)
2 𝑡

(𝑙)
3 𝑡

(𝑙)
4

𝑋(𝑘)

𝑋(𝑙)

∆𝑋
(𝑘)

𝑡
(𝑘)
1

∆𝑋
(𝑘)

𝑡
(𝑘)
2

∆𝑋
(𝑘)

𝑡
(𝑘)
3

∆𝑋
(𝑘)

𝑡
(𝑘)
4

∆𝑋
(𝑙)

𝑡
(𝑙)
3

∆𝑋
(𝑙)

𝑡
(𝑙)
2

∆𝑋
(𝑙)

𝑡
(𝑙)
1

When returns are preaveraged with preaverage(), the HY estimator of can be made robust to microstructure noise
as well. It is then of the slightly adjusted form

⟨
𝑋(𝑘), 𝑋(𝑙)

⟩𝜃

𝐻𝑌
=

1

(𝜓𝐻𝑌𝐾)
2

𝑛(𝑘)∑︁
𝑖=𝐾

𝑛(𝑙)∑︁
𝑖′=𝐾

𝑌
(𝑘)

𝑡
(𝑘)
𝑖

𝑌
(𝑙)

𝑡
(𝑙)

𝑖′
1{︁(︁

𝑡
(𝑘)
𝑖−𝐾 ,𝑡

(𝑘)
𝑖

]︁
∩
(︁
𝑡
(𝑙)

𝑖′−𝐾
,𝑡

(𝑙)

𝑖′

]̸︁
=∅

)︁(2.2)

where 𝜓𝐻𝑌 = 1
𝐾

∑︀𝐾−1
𝑖=1 𝑔

(︀
𝑖
𝐾

)︀
The preaveraged HY estimator has optimal convergence rate 𝑛−1/4, where 𝑛 =∑︀𝑝

𝑗=1 𝑛
(𝑗). Christensen et al. (2013) subsequently proof a central limit theorem for this estimator and show that it is

robust to some dependence structure of the noise process. Since preaveraging is performed before synchronization, the
estimator utilizes more data than other methods that cancel noise after synchronization. In particular, the preaveraged
HY estimator even uses the observation 𝑡(𝑗)2 in the figure, which does not contribute the the covariance due to the
log-summability.

References

Hayashi, T. and Yoshida, N. (2005). On covariance estimation of non-synchronously observed diffusion processes,
Bernoulli 11(2): 359–379.

Christensen, K., Kinnebrock, S. and Podolskij, M. (2010). Pre-averaging estimators of the ex-post covariance matrix
in noisy diffusion models with non-synchronous data, Journal of Econometrics 159(1): 116–133.

Hautsch, N. and Podolskij, M. (2013). Preaveraging-based estimation of quadratic variation in the presence of
noise and jumps: theory, implementation, and empirical evidence, Journal of Business & Economic Statistics 31(2):
165–183.

Christensen, K., Podolskij, M. and Vetter, M. (2013). On covariation estimation for multivariate continuous it^o
semimartingales with noise in non-synchronous observation schemes, Journal of Multivariate Analysis 120: 59–84.
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Examples

>>> np.random.seed(0)
>>> n = 10000
>>> returns = np.random.multivariate_normal([0, 0], [[1,0.5],[0.5,1]], n)/n**0.5
>>> prices = np.exp(returns.cumsum(axis=0))
>>> # sample n/2 (non-synchronous) observations of each tick series
>>> series_a = pd.Series(prices[:, 0]).sample(int(n/2)).sort_index()
>>> series_b = pd.Series(prices[:, 1]).sample(int(n/2)).sort_index()
>>> # take logs
>>> series_a = np.log(series_a)
>>> series_b = np.log(series_b)
>>> icov = hayashi_yoshida([series_a, series_b])
>>> np.round(icov, 3)
array([[0.983, 0.512],

[0.512, 0.99 ]])

krvm

hf.krvm(tick_series_list, H, pairwise=True, kernel=CPUDispatcher(<function quadratic_spectral_kernel at
0x7f33a9bf6730>))

The kernel realized volatility matrix estimator (KRVM) of Barndorff-Nielsen et al. (2011).

Parameters

tick_series_list [list of pd.Series] Each pd.Series contains tick-log-prices of one asset with date-
time index.

H [int, > 0] The bandwidth parameter for the Parzen kernel. Should be on the order of 𝑛3/5.

pairwise [bool, default=True] If True the estimator is applied to each pair individually. This
increases the data efficiency but may result in an estimate that is not p.s.d even for the p.s.d
version of thiss estimator.

kernel [function, default=quadratic_spectral_kernel] The kernel weighting function.

Returns

cov [numpy.ndarray] The intgrated covariance matrix estimate.

Notes

The multivariate realized kernel estimator smoothes the autocovariance operator and thereby achieves the opti-
mal convergence rate in the multivariate setting with noise and asynchronous observation times. Incidentally,
this estimator is similar in form to the HAC, widely used in the statistics and econometrics literature to deal
with heteroscedastic and autocorrelated noise. Observations are synchronized with the refresh-time()
scheme. In addition, 𝑚 observation are averaged at the beginning and at the end of the trading day to
estimate the efficient price at these times. The authors call this ‘jittering’. In practice the effect of jittering
is negligible but it is needed for proving consistency. (It is ignored in this implementation.) The, with
parameter 𝑚, jittered log-price vectors are denoted as Y(𝑚)(𝑠), 𝑠 = 1, . . . , 𝑛 − 2𝑚 + 1. The kernel esti-
mator is defined by \begin{equation} \widehat{\mathbf{\Sigma}}^{(KRVM)}=\boldsymbol{\gamma}^{(0)}
\left(\mathbf{Y}^{(m)}\right)+\sum_{h=1}^{n-2 m} k\left(\frac{h-1}{H} \right)\left[\boldsymbol{\gamma}^{(h)}\left(\mathbf{Y}^{(m)}\right)+
\boldsymbol{\gamma}^{(-h)}\left(\mathbf{Y}^{(m)}\right)\right], \end{equation} where \begin{equation}
\boldsymbol{\gamma}^{(h)}\left(\mathbf{Y}\right)= \sum_{s=h+2}^{n+1}\left(\mathbf{Y}(s)-
\mathbf{Y}(s-1)\right) \left(\mathbf{Y}(s-h)-\mathbf{Y}(s-h-1)\right)^{\prime}, \quad h \geq
0 \end{equation} and \begin{equation} \boldsymbol{\gamma}^{(h)}\left(\mathbf{Y}\right)=

10 Chapter 2. Design Philosophy
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\boldsymbol{\gamma}^{(-h)}\left(\mathbf{Y}\right)^{\prime}, \quad h < 0, \end{equation} with Y de-
noting the synchronized zero-return log-price. 𝛾(ℎ) is the ℎth realized autocovariance (gamma()). 𝑘(·)
is the kernel function with its bandwidth parameter 𝐻 . It is assumed that (i) 𝑘(0) = 1 and 𝑘′(0) = 0,
(ii) 𝑘(·) is twice differentiable with continuous derivatives, and (iii)

∫︀∞
0
𝑘(𝑥)2𝑑𝑥,

∫︀∞
0
𝑘′(𝑥)2𝑑𝑥 and∫︀∞

0
𝑘′′(𝑥)2𝑑𝑥 are finite. A slightly adjusted form of this estimator that is positive semidefinite is

given by \begin{equation} \widehat{\mathbf{\Sigma}}^{(KRVM_{psd})}=\boldsymbol{\gamma}^{(0)}
\left(\mathbf{Y}^{(m)}\right)+\sum_{h=1}^{n-2 m} k\left(\frac{h}{H}\right)
\left[\boldsymbol{\gamma}^{(h)}\left(\mathbf{Y}^{(m)}\right)+ \boldsymbol{\gamma}^{(-
h)}\left(\mathbf{Y}^{(m)}\right)\right]. \end{equation} This form requires the additional assumption∫︀∞
−∞ 𝑘(𝑥) exp(𝑖𝑥𝜆)𝑑𝑥 ≥ 0 for all 𝜆 ∈ R.

Choosing the right kernel function is important. The authors show, for example, that the estimator based
on the Bartlett weight function is inconsistent. Instead, the Parzen kernel (parzen_kernel()) is sug-
gested as a weight function that yields a consistent estimator and can be efficiently implemented. The
bandwidth 𝐻 must be on the order of 𝑛3/5. The authors choose the scalar 𝐻 as the average of opti-
mal individual 𝐻(𝑗): $$\bar{H}=p^{-1} \sum_{j=1}^{p} H^{(j)},$$ where \begin{equation} H^{(j)}=c^{*}
\xi_{j}^{4 / 5} n^{3 / 5}, \end{equation} with \begin{equation} c^{*}=\left\{k^{\prime \prime}(0)^{2} /
k_{\bullet}^{0,0}\right\}^{1 / 5}, \end{equation} and \begin{equation} \xi_{j}^{2}={\Sigma}_{\epsilon, j j} /
{\Sigma}_{j j}. \end{equation} Σ𝜖 and Σ denote, as previously defined, the integrated covariance matrix of the
noise and the efficient return process, respectively. Here these quantities are understood over the interval under
consideration. Hence, 𝜉2𝑗 can be interpreted as the ratio of the noise variance and the return variance. For the
Parzen kernel 𝑐* = 3.51, as tabulated by the authors. It is a measure of the relative asymptotic efficiency of the
kernel. Σ𝑗𝑗 may be estimated via a low frequency estimator and Σ𝜖,𝑗𝑗 via a high frequency estimator.

References

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A. and Shephard, N. (2011). Multivariate realised kernels:
consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous
trading, Journal of Econometrics 162(2): 149– 169.

mrc

hf.mrc(tick_series_list, theta=None, g=None, bias_correction=True, pairwise=True, k=None)
The modulated realised covariance (MRC) estimator of Christensen et al. (2010).

Parameters

tick_series_list [list of pd.Series] Each pd.Series contains tick-log-prices of one asset with date-
time index.

theta [float, optional, default=None] Theta is used to determine the preaveraging window k. If
bias_correction is True (see below) then 𝑘 = 𝜃

√
𝑛, else 𝑘 = 𝜃𝑛1/2+0.1. Hautsch &

Podolskij (2013) recommend 0.4 for liquid assets and 0.6 for less liquid assets. If theta=0,
the estimator reduces to the standard realized covariance estimator. If theta=None and k
is not specified explicitly, the suggested theta of 0.4 is used.

g [function, optional, default = None] A vectorized weighting function. If g = None, 𝑔 =
𝑚𝑖𝑛(𝑥, 1 − 𝑥)

bias_correction [boolean, optional] If True (default) then the estimator is optimized for con-
vergence rate but it might not be p.s.d. Alternatively as described in Christensen et al. (2010)
it can be ommited. Then k should be chosen larger than otherwise optimal.

pairwise [bool, default=True] If True the estimator is applied to each pair individually. This
increases the data efficiency but may result in an estimate that is not p.s.d.

2.1. hfhd 11
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k [int, optional, default=None] The bandwidth parameter with which to preaverage. Alternative
to theta. Useful for non-parametric eigenvalue regularization based on sample spliting.

Returns

mrc [numpy.ndarray] The mrc estimate of the integrated covariance.

Notes

The MRC estimator is the equivalent to the realized integrated covariance estimator using preaveraged returns.
It is of thus of the form

[Y]
(MRC)

=
𝑛

𝑛−𝐾 + 2

1

𝜓2𝐾

𝑛∑︁
𝑖=𝐾−1

Ȳ𝑖Ȳ
′
𝑖, (2.3)

where 𝑛
𝑛−𝐾+2 is a finite sample correction, and

𝜓𝑘
1 = 𝑘

𝑘∑︁
𝑖=1

(︂
𝑔

(︂
𝑖

𝑘

)︂
− 𝑔

(︂
𝑖− 1

𝑘

)︂)︂2

𝜓𝑘
2 =

1

𝑘

𝑘−1∑︁
𝑖=1

𝑔2
(︂
𝑖

𝑘

)︂
.

(2.4)

𝜓𝑘
2 =

1

𝑘

𝑘−1∑︁
𝑖=1

𝑔2
(︂
𝑖

𝑘

)︂
.

In this form, however, the estimator is biased. The bias corrected estimator is given by

[Y]
(MRC)

=
𝑛

𝑛−𝐾 + 2

1

𝜓2𝑘

𝑛∑︁
𝑖=𝐾−1

Ȳ𝑖

(︂
Ȳ𝑖 −

𝜓1

𝜃2𝜓2
Ψ̂

)︂′

,

where

Ψ̂ =
1

2𝑛

𝑛∑︁
𝑖=1

∆𝑖Y (∆𝑖Y)
′
.
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The rate of convergence of this estimator is determined by the window-length 𝐾. Choosing 𝐾 = 𝒪(
√
𝑛), delivers the

best rate of convergence of 𝑛−1/4. It is thus suggested to choose 𝐾 = 𝜃
√
𝑛, where 𝜃 can be calibrated from the data.

Hautsch and Podolskij (2013) suggest values between 0.4 (for liquid stocks) and 0.6 (for less liquid stocks).

Note: The bias correction may result in an estimate that is not positive semi-definite.

If positive semi-definiteness is essential, the bias-correction can be omitted. In this case, 𝐾 should be chosen larger
than otherwise optimal with respect to the convergence rate. Of course, the convergence rate is slower then. The
optimal rate of convergence without the bias correction is 𝑛−1/5, which is attained when 𝐾 = 𝜃𝑛1/2+𝛿 with 𝛿 = 0.1.

theta should be chosen between 0.3 and 0.6. It should be chosen higher if (i) the sampling frequency declines, (ii)
the trading intensity of the underlying stock is low, (iii) transaction time sampling (TTS) is used as opposed to calendar
time sampling (CTS). A high theta value can lead to oversmoothing when CTS is used. Generally the higher the
sampling frequency the better. Since mrc() and msrc() are based on different approaches it might make sense to
ensemble them. Monte Carlo results show that the variance estimate of the ensemble is better than each component
individually. For covariance estimation the preaveraged hayashi_yoshida() estimator has the advantage that
even ticks that don’t contribute to the covariance (due to log-summability) are used for smoothing. It thus uses the
data more efficiently.

References

Christensen, K., Kinnebrock, S. and Podolskij, M. (2010). Pre-averaging estimators of the ex-post covariance matrix
in noisy diffusion models with non-synchronous data, Journal of Econometrics 159(1): 116–133.

Hautsch, N. and Podolskij, M. (2013). Preaveraging-based estimation of quadratic variation in the presence of
noise and jumps: theory, implementation, and empirical evidence, Journal of Business & Economic Statistics 31(2):
165–183.

Examples

>>> np.random.seed(0)
>>> n = 2000
>>> returns = np.random.multivariate_normal([0, 0], [[1, 0.5],[0.5, 1]], n)
>>> returns /= n**0.5
>>> prices = 100 * np.exp(returns.cumsum(axis=0))
>>> # add Gaussian microstructure noise
>>> noise = 10 * np.random.normal(0, 1, n * 2).reshape(-1, 2)
>>> noise *= np.sqrt(1 / n ** 0.5)
>>> prices += noise
>>> # sample n/2 (non-synchronous) observations of each tick series
>>> series_a = pd.Series(prices[:, 0]).sample(int(n/2)).sort_index()
>>> series_b = pd.Series(prices[:, 1]).sample(int(n/2)).sort_index()
>>> # take logs
>>> series_a = np.log(series_a)
>>> series_b = np.log(series_b)
>>> icov_c = mrc([series_a, series_b], pairwise=False)
>>> # This is the unbiased, corrected integrated covariance matrix estimate.
>>> np.round(icov_c, 3)
array([[0.882, 0.453],

[0.453, 0.934]])
>>> # This is the unbiased, corrected realized variance estimate.

(continues on next page)
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(continued from previous page)

>>> ivar_c = mrc([series_a], pairwise=False)
>>> np.round(ivar_c, 3)
array([[0.894]])
>>> # Use ticks more efficiently by pairwise estimation
>>> icov_c = mrc([series_a, series_b], pairwise=True)
>>> np.round(icov_c, 3)
array([[0.894, 0.453],

[0.453, 0.916]])

msrc

hf.msrc(tick_series_list, M=None, N=None, pairwise=True)
The multi-scale realized volatility (MSRV) estimator of Zhang (2006). It is extended to multiple dimensions
following Zhang (2011). If pairwise=True estimate correlations with pairwise-refresh time previous ticks
and variances with all available ticks for each asset.

Parameters

tick_series_list [list of pd.Series] Each pd.Series contains tick-log-prices of one asset with date-
time index. Must not contain nans.

M [int, >=1, default=None] The number of scales If M=None all scales 𝑖 = 1, ...,𝑀 are used,
where M is chosen 𝑀 = 𝑛1/2 acccording to Eqn (34) of Zhang (2006).

N [int, >=0, default=None] The constant 𝑁 of Tao et al. (2013) If N=None 𝑁 = 𝑛1/2. Lam
and Qian (2019) need 𝑁 = 𝑛2/3 for non-sparse integrated covariance matrices, in which
case the rate of convergence reduces to 𝑛1/6.

pairwise [bool, default=True] If True the estimator is applied to each pair individually. This
increases the data efficiency but may result in an estimate that is not p.s.d.

Returns

out [numpy.ndarray] The mrc estimate of the integrated covariance matrix.

Notes

Realized variance estimators based on multiple scales exploit the fact that the proportion of the observed realized
variance over a specified interval due to microstructure noise increases with the sampling frequency, while the
realized variance of the true underlying process stays constant. The bias can thus be corrected by subtracting
a high frequency estimate, scaled by an optimal weight, from a medium frequency estimate. The weight is
chosen such that the large bias in the high frequency estimate, when scaled by the weight, is exactly equal to the
medium bias, and they cancel each other out as a result.

By considering 𝑀 time scales, instead of just two as in tsrc(), Zhang2006 improves the rate of
convergence to 𝑛−1/4. This is the best attainable rate of convergence in this setting. The proposed
multi-scale realized volatility (MSRV) estimator is defined as \begin{equation} \langle\widehat{X^{(j)},
X^{(j)}}\rangle^{(MSRV)}_T=\sum_{i=1}^{M} \alpha_{i}[Y^{(j)}, Y^{(j)}]^{\left(K_{i}\right)}_T
\end{equation} where 𝛼𝑖 are weights satisfying \begin{equation} \begin{aligned} &\sum \alpha_{i}=1\
&\sum_{i=1}^{M}\left(\alpha_{i} / K_{i}\right)=0 \end{aligned} \end{equation} The optimal weights for
the chosen number of scales 𝑀 , i.e., the weights that minimize the noise variance contribution, are given
by \begin{equation} a_{i}=\frac{K_{i}\left(K_{i}-\bar{K}\right)} {M \operatorname{var}\left(K\right)},
\end{equation} where %�̄� denotes the mean of 𝐾. $$\bar{K}=\frac{1}{M} \sum_{i=1}^{M} K_{i} \quad
\text { and } \quad \operatorname{var}\left(K\right)=\frac{1}{M} \sum_{i=1}^{M} K_{i}^{2}-\bar{K}^{2}.
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$$ If all scales are chosen, i.e., 𝐾𝑖 = 𝑖, for 𝑖 = 1, . . . ,𝑀 , then �̄� = (𝑀 + 1) /2 and var (𝐾) =
(︀
𝑀2 − 1

)︀
/12,

and hence

\begin{equation} a_{i}=12 \frac{i}{M^{2}} \frac{i / M-1 / 2-1 / \left(2 M\right)}{1-1 / M^{2}}.
\end{equation} In this case, as shown by the author in Theorem 4, when 𝑀 is chosen optimally on the or-
der of 𝑀 = 𝒪(𝑛1/2), the estimator is consistent at rate 𝑛−1/4.

References

Zhang, L. (2006). Efficient estimation of stochastic volatility using noisy observations: A multi-scale approach,
Bernoulli 12(6): 1019–1043.

Zhang, L. (2011). Estimating covariation: Epps effect, microstructure noise, Journal of Econometrics 160.

Examples

>>> np.random.seed(0)
>>> n = 200000
>>> returns = np.random.multivariate_normal([0, 0], [[1,0.5],[0.5,1]], n)/n**0.5
>>> prices = 100*np.exp(returns.cumsum(axis=0))
>>> # add Gaussian microstructure noise
>>> noise = 10*np.random.normal(0, 1, n*2).reshape(-1, 2)*np.sqrt(1/n**0.5)
>>> prices +=noise
>>> # sample n/2 (non-synchronous) observations of each tick series
>>> series_a = pd.Series(prices[:, 0]).sample(int(n/2)).sort_index()
>>> series_b = pd.Series(prices[:, 1]).sample(int(n/2)).sort_index()
>>> # get log prices
>>> series_a = np.log(series_a)
>>> series_b = np.log(series_b)
>>> icov = msrc([series_a, series_b], M=1, pairwise=False)
>>> icov_c = msrc([series_a, series_b])
>>> # This is the biased, uncorrected integrated covariance matrix estimate.
>>> np.round(icov, 3)
array([[11.553, 0.453],

[ 0.453, 2.173]])
>>> # This is the unbiased, corrected integrated covariance matrix estimate.
>>> np.round(icov_c, 3)
array([[0.985, 0.392],

[0.392, 1.112]])

parzen_kernel

hf.parzen_kernel(x)
The Parzen weighting function used in the kernel realized volatility matrix estimator (krvm()) of Barndorff-
Nielsen et al. (2011).

Parameters

x [float]

Returns

y [float] The weight.
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References

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A. and Shephard, N. (2011). Multivariate realised kernels:
consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous
trading, Journal of Econometrics 162(2): 149– 169.

preaverage

hf.preaverage(data, K=None, g=None, return_K=False)
The preaveraging scheme of Podolskij and Vetter (2009). It uses the fact that if the noise is i.i.d with zero
mean, then averaging a rolling window of (weighted) returns diminishes the effect of microstructure noise on
the variance estimate.

Parameters

data [pd.Series or pd.DataFrame] A time series of log-returns. If multivariate, the time series
has to be synchronized (e.g. with refresh_time()).

K [int, default = None] The preaveraging window length. None implies 𝐾 = 0.4𝑛1/2 is
chosen as recommended in Hautsch & Podolskij (2013).

g [function, default = None] A weighting function. None implies 𝑔(𝑥) = 𝑚𝑖𝑛(𝑥, 1 − 𝑥) is
chosen.

Returns

data_pa [pd.Series] The preaveraged log-returns.

Notes

The preaveraged log-returns using the window-length 𝐾 are given by

Ȳ𝑖 =

𝐾−1∑︁
𝑗=1

𝑔

(︂
𝑗

𝐾

)︂
∆𝑖−𝑗+1Y, for 𝑖 = 𝐾, . . . , 𝑛,

where Y𝑖 have been synchronized beforehand, for example with refresh_time(). Note that the direction of the
moving window has been reversed compared to the definition in Podolskij and Vetter (2009) to stay consistent within
the package. 𝑔 is a weighting function. A popular choice is

𝑔(𝑥) = min(𝑥, 1 − 𝑥).
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References

Podolskij, M., Vetter, M., 2009. Estimation of volatility functionals in the simultaneous presence of microstructure
noise and jumps. Bernoulli 15 (3), 634–658.

quadratic_spectral_kernel

hf.quadratic_spectral_kernel(x)
The Quadratic Spectral weighting function used in the kernel realized volatility matrix estimator (krvm()) of
Barndorff-Nielsen et. al (2011).

Parameters

x [float]

Returns

y [float] The weight.

References

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A. and Shephard, N. (2011). Multivariate realised kernels:
consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous
trading, Journal of Econometrics 162(2): 149– 169.

refresh_time

hf.refresh_time(tick_series_list)
The all-refresh time scheme of Barndorff-Nielsen et al. (2011). If this function is applied to two assets at a time,
it becomes the pairwise-refresh time. The function is accelerated via JIT compilation with Numba.

Parameters

tick_series_list [list of pd.Series] Each pd.Series contains tick prices of one asset with datetime
index.

Returns

out [pd.DataFrame] Synchronized previous ticks according to the refresh-time scheme.

Notes

Multivariate estimators require synchronization of the time series. This can be achieved via a grid. A
grid is a subset of [0, 𝑇 ] and it is defined as \begin{equation} \mathcal{V}=\left\{v_{0}, v_{1}, \ldots,
v_{\tilde{n}}\right\}\subset[0, T] \end{equation} with 𝑣0 = 0 and 𝑣�̃� = 𝑇, where �̃� is the sampling fre-
quency, i.e., the number of grid intervals. Two prominent ways to specify the grid are (i) a regular grid, where
𝑣𝑚 − 𝑣𝑚−1 = ∆𝑣, for 𝑚 = 1, . . . , �̃�, and (ii) a grid based on ‘refresh times’ of Barndorff et al. (2011), where
the grid spacing is dependent on the observation times. If more than two assets are considered, refresh times can
be further classified into ‘all-refresh-times’ and ‘pairwise-refresh times’. Estimators based on pairwise-refresh
times use the data more efficiently but the integrated covariance matrix estimate might not be positive defi-
nite. The pairwise-refresh time 𝒱𝑝 = {𝑣0, 𝑣1, . . . , 𝑣�̃�} can be obtained by setting 𝑣0 = 0, and \begin{equation}
v_{m}=\max \left\{\min \left\{t^{(k)}_i \in t^{(k)}: t^{(k)}_i > v_{m-1}\right\},\min \left\{t^{(l)}_i \in t^{(l)}:
t^{(l)}_i > v_{m-1}\right\}\right\} \end{equation} where �̃� is the total number of refresh times in the interval
(0, 1]. This scheme is illustrated in the figure. The procedure has to be repeated for every asset pair. In contrast,
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the all-refresh time scheme uses a single grid for all assets, which is determined based on the trade time of the
slowest asset of each grid interval. Hence, the spacing of grid elements can be much wider. This implies that
estimators based on the latter scheme may discard a large proportion of the data, especially if there is a very
slowly trading asset. In any case, there has to be at least one observation time of each asset between any two
grid elements. With that condition in mind, the ‘previous tick time’ of asset 𝑗 is defined as \begin{equation}
\tau^{(j)}_m=\max \left\{ t^{(j)}_i \in t^{(j)}: t^{(j)}_i \leq v_{m}\right\} \end{equation} The following dia-
gram illustrates the scheme for two assets, 𝑘 and 𝑙.
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References

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A. and Shephard, N. (2011). Multivariate realised kernels:
consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous
trading, Journal of Econometrics 162(2): 149–169.

Examples

>>> np.random.seed(0)
>>> n = 20
>>> returns = np.random.multivariate_normal([0, 0], [[1,0.5],[0.5,1]], n)/n**0.5
>>> prices = np.exp(returns.cumsum(axis=0))
>>> # sample n/2 (non-synchronous) observations of each tick series
>>> series_a = pd.Series(prices[:, 0]).sample(int(n/2)).sort_index().rename('a')
>>> series_b = pd.Series(prices[:, 1]).sample(int(n/2)).sort_index().rename('b')
>>> previous_ticks = refresh_time([series_a, series_b])
>>> np.round(previous_ticks.values,4)
array([[0.34 , 0.4309],

[0.2317, 0.4313],
[0.1744, 0.4109],
[0.1336, 0.3007],
[0.1383, 0.4537],
[0.1292, 0.1665],
[0.0936, 0.162 ]])
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tsrc

hf.tsrc(tick_series_list, J=1, K=None)
The two-scales realized volatility (TSRV) of Zhang et al. (2005). It is extentended to handle multiple dimension
according to Zhang (2011). msrc() has better convergence rate and is thus prefrerred.

Parameters

tick_series_list [list of pd.Series] Each pd.Series contains tick-log-prices of one asset with date-
time index.

K [int, default = int(n**(2/3))] long scale, default = int(n**(2/3)) as per Zhang
(2005)

J [int, default = 1] short scale

Returns

out [numpy.ndarray] The TSRV estimate.

Notes

The two-scales realized volatility (TSRV) estimator is defined as

\begin{equation} \widehat{\langle X^{(j)}, X^{(j)}\rangle}^{(\mathrm{TSRV})}_{T}= \left[Y^{(j)},
Y^{(j)}\right]_{T}^{(K)}-\frac{\bar{n}_{K}}{\bar{n}_{J}} \left[Y^{(j)}, Y^{(j)}\right]_{T}^{(J)},
\end{equation} where \begin{equation} \left[Y^{(j)}, Y^{(j)}\right]_{T}^{(K)}=\frac{1}{K}
\sum_{i=K}^{n}\left(Y_{\tau_{i}^{(j)}}^{(j)}- Y_{\tau_{i-K}^{(j)}}^{(j)}\right)^2, \end{equation}
with 𝐾 being a positive integer usually chosen much larger than 1 and �̄�𝐾 = (𝑛−𝐾 + 1) /𝐾 and
�̄�𝐽 = (𝑛− 𝐽 + 1) /𝐽 . If 𝐾 is chosen on the order of𝐾 = 𝒪

(︀
𝑛2/3

)︀
this estimator is asymptotically unbiased,

consistent, asymptotically normal distributed and converges at rate 𝑛−1/6.

Zhang (2011) proposes the (multivariate) two scales realized covariance (TSCV) estimator based on previous-
tick times of asset 𝑘 and 𝑙, which simultaneously corrects for the bias due to asynchronicity and the bias due to
microstructure noise. Previous-tick times may be computed via refresh_time().

The TSCV estimator is defined as \begin{equation} \widehat{\langle
X^{(k)},X^{(l)}\rangle}_{T}^{(TSCV)}=c\left(\left[Y^{(k)}, Y^{(l)}\right]_{T}^{(K)}-
\frac{\bar{n}_{K}}{\bar{n}_{J}}\left[Y^{(k)}, Y^{(l)}\right]_{T}^{(J)}\right), \end{equation}
where \begin{equation} \left[Y^{(k)}, Y^{(l)}\right]_{T}^{(K)}=\frac{1}{K}
\sum_{i=K}^{\tilde{n}}\left(Y^{(k)}_{\tau^{(k)}_{i}}-Y^{(k)}_{\tau^{(k)}_{i-K}}
\right)\left(Y^{(l)}_{\tau^{(l)}_{i}}-Y^{(l)}_{\tau^{(l)}_{i-K}}\right) \end{equation} 𝑐 = 1 + 𝑜𝑝

(︀
�̃�−1/6

)︀
is a small sample correction. 𝐾 is again a positive integer usually chosen much larger than 1 and
�̄�𝐾 = (�̃�−𝐾 + 1) /𝐾 and �̄�𝐽 = (�̃�− 𝐽 + 1) /𝐽 . The author shows that if 𝐾 = 𝒪

(︀
(𝑛(𝑘) + 𝑛(𝑙))2/3

)︀
this

estimator is asymptotically unbiased, consistent, asymptotically normal distributed and converges at rate �̃�−1/6.

Note: Use msrc() since it has better converges rate.
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References

Zhang, L., Mykland, P. A. and Ait-Sahalia, Y. (2005). A tale of two time scales: Determining integrated
volatility with noisy high-frequency data, Journal of the American Statistical Association 100(472): 1394–1411.

Zhang, L. (2011). Estimating covariation: Epps effect, microstructure noise, Journal of Econometrics 160.

Examples

>>> np.random.seed(0)
>>> n = 200000
>>> returns = np.random.multivariate_normal([0, 0], [[1, 0.5],[0.5, 1]], n)/n**0.5
>>> prices = 100*np.exp(returns.cumsum(axis=0))
>>> # add Gaussian microstructure noise
>>> noise = 10*np.random.normal(0, 1, n*2).reshape(-1, 2)*np.sqrt(1/n**0.5)
>>> prices += noise
>>> # sample n/2 (non-synchronous) observations of each tick series
>>> series_a = pd.Series(prices[:, 0]).sample(int(n/2)).sort_index()
>>> series_b = pd.Series(prices[:, 1]).sample(int(n/2)).sort_index()
>>> # take logs
>>> series_a = np.log(series_a)
>>> series_b = np.log(series_b)
>>> icov_c = tsrc([series_a, series_b])
>>> # This is the unbiased, corrected integrated covariance matrix estimate.
>>> np.round(icov_c, 3)
array([[0.995, 0.361],

[0.361, 0.977]])

2.1.2 hd Module

This module provides functions to estimate covariance matrices in high dimension, i.e., when the concentration ratio
is not small or even greater than one.

Functions

fsopt(S, sigma) The infeasible finite sample optimal rotation equivariant
covariance matrix estimator of Ledoit and Wolf (2018).

linear_shrink_target(cov, target[, step, . . . ]) Linearly shrink a covariance matrix until a condition
number target is reached.

linear_shrinkage(X) The linear shrinkage estimator of Ledoit and Wolf
(2004).

nercome(X[, m, M]) The nonparametric eigenvalue-regularized covariance
matrix estimator (NERCOME) of Lam (2016).

nerive(tick_series_list[, stp, estimator]) The nonparametric eigenvalue-regularized integrated
covariance matrix estimator (NERIVE) of Lam and
Feng (2018).

nonlinear_shrinkage(X) Compute the shrunk sample covariance matrix with the
analytic nonlinear shrinkage formula of Ledoit and Wolf
(2018).

to_corr(cov) Convert a covariance matrix to a correlation matrix.
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fsopt

hd.fsopt(S, sigma)
The infeasible finite sample optimal rotation equivariant covariance matrix estimator of Ledoit and Wolf (2018).

Parameters

S [numpy.ndarray] The sample covariance matrix.

sigma [numpy.ndarray] The (true) population covariance matrix.

Returns

out [numpy.ndarray] The finite sample optimal rotation equivariant covariance matrix estimate.

Notes

This estimator is given by

𝑆*
𝑛 :=

𝑝∑︁
𝑖=1

𝑑*𝑛,𝑖 · 𝑢𝑛,𝑖𝑢′𝑛,𝑖 =

𝑝∑︁
𝑖=1

(︀
𝑢′𝑛,𝑖Σ𝑛𝑢𝑛,𝑖

)︀
· 𝑢𝑛,𝑖𝑢′𝑛,𝑖,

where [𝑢𝑛,1 . . . 𝑢𝑛,𝑝] are the sample eigenvectors.

References

Ledoit, O. and Wolf, M. (2018). Analytical nonlinear shrinkage of large-dimensional covariance matrices,
University of Zurich, Department of Economics, Working Paper (264).

linear_shrink_target

hd.linear_shrink_target(cov, target, step=0.05, max_iter=100)
Linearly shrink a covariance matrix until a condition number target is reached. Useful for reducing the impact
of outliers in nerive().

Parameters

cov [numpy.ndarray, shape = (p, p)] The covariance matrix.

target: float > 1 The highest acceptable condition number.

step [float > 0] The linear shrinkage parameter for each step.

max_iter [int > 1] The maximum number of iterations until giving up.

Returns

cov [numpy.ndarray, shape = (p, p)] The linearly shrunk covariance matrix estimate.
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linear_shrinkage

hd.linear_shrinkage(X)
The linear shrinkage estimator of Ledoit and Wolf (2004). The observations need to be synchronized and i.i.d.

Parameters

X [numpy.ndarray, shape = (p, n)] A sample of synchronized log-returns.

Returns

shrunk_cov [numpy.ndarray] The linearly shrunk covariance matrix.

Notes

The most ubiquitous estimator of the rotation equivariant type is perhaps the linear shrinkage estimator of
Ledoit and Wolf (2004). These authors propose a weighted average of the sample covariance matrix and
the identity (or some other highly structured) matrix that is scaled such that the trace remains the same.
The weight, or shrinkage intensity, 𝜌 is chosen such that the squared Frobenius loss is minimized by in-
ducing bias but reducing variance. In Theorem 1, the authors show that the optimal 𝜌 is given by \be-
gin{equation} \rho=\beta^{2} /\left(\alpha^{2}+\beta^{2}\right)=\beta^{2} / \delta^{2}, \end{equation} where
𝜇 = tr(Σ)/𝑝, 𝛼2 = ‖Σ − 𝜇I𝑝‖2𝐹 , 𝛽2 = 𝐸

[︀
‖S−Σ‖2𝐹

]︀
, and 𝛿2 = 𝐸

[︀
‖S− 𝜇I𝑝‖2𝐹

]︀
. 𝛽2/𝛿2 can be inter-

preted as a normalized measure of the error of the sample covariance matrix. Shrinking the covariance matrix
towards the 𝜇-scaled identity matrix has the effect of pulling the eigenvalues towards 𝜇. This reduces eigen-
value dispersion. In other words, the elements of the diagonal matrix in the rotation equivariant form are
chosen as \begin{equation} \widehat{\mathbf{\delta}}^{(l, o)}:=\left(\widehat{d}_{1}^{(l, o)}, \ldots, \wide-
hat{d}_{p}^{(l, o)}\right)=\left(\rho \mu+(1-\rho) \lambda_{1}, \ldots, \rho \mu+(1-\rho) \lambda_{p}\right).
\end{equation} In the current form it is still an oracle estimator since it depends on ] unobservable quanti-
ties. To make it a feasible estimator, these quantities have to be estimated. To this end, define the grand
mean as \begin{equation} \label{eqn: grand mean} \bar{\lambda}:=\frac{1}{p} \sum_{i=1}^{p} \lambda_{i},
\end{equation} The estimator for 𝜌 is given by \begin{equation} \widehat{\rho} : = \frac{b^{2}}{d^{2}},
\end{equation} where 𝑑2 =

⃦⃦
S− �̄�I𝑝

⃦⃦2
𝐹

and 𝑏2 = min
(︀
�̄�2, 𝑑2

)︀
with �̄�2 = 1

𝑛2

∑︀𝑛
𝑘=1

⃦⃦
x𝑘 (x𝑘)

′ − S
⃦⃦2
𝐹

,
where x𝑘 denotes the 𝑘th column of the observation matrix X for 𝑘 = 1, . . . , 𝑛. In order for this esti-
mator to be consistent, the assumption that X is i.i.d with finite fourth moments must be satisfied. The
feasible linear shrinkage estimator is then of form rotation equivatiant form with the elements of the diago-
nal chosen as \begin{equation} \widehat{\mathbf{\delta}}^{(l)}:=\left(\widehat{d}_{{1}}^{(l)}, \ldots, \wide-
hat{d}_{p}^{(l)}\right)=\left( \widehat{\rho} \bar{\lambda}+ (1- \widehat{\rho}) \lambda_{1}, \ldots, \wide-
hat{\rho} \bar{\lambda}+ (1- \widehat{\rho}) \lambda_{p}\right). \end{equation} Hence, the linear shrink-
age estimator is given by \begin{equation} \widehat{\mathbf{S}}:=\sum_{i=1}^{p} \widehat{d}_{i}^{(l)}
\mathbf{u}_{i} \mathbf{u}_{i}^{\prime} \end{equation} The result is a biased but well-conditioned covari-
ance matrix estimate.

References

Ledoit, O. and Wolf, M. (2004). A well-conditioned estimator for large-dimensional covariance matrices, Jour-
nal of Multivariate Analysis 88(2): 365–411.
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Examples

>>> np.random.seed(0)
>>> n = 5
>>> p = 5
>>> X = np.random.multivariate_normal(np.zeros(p), np.eye(p), n)
>>> cov = linear_shrinkage(X.T)
>>> cov
array([[1.1996234, 0. , 0. , 0. , 0. ],

[0. , 1.1996234, 0. , 0. , 0. ],
[0. , 0. , 1.1996234, 0. , 0. ],
[0. , 0. , 0. , 1.1996234, 0. ],
[0. , 0. , 0. , 0. , 1.1996234]])

nercome

hd.nercome(X, m=None, M=50)
The nonparametric eigenvalue-regularized covariance matrix estimator (NERCOME) of Lam (2016).

Parameters

X [numpy.ndarray, shape = (p, n)] A 2d array of log-returns (n observations of p assets).

m [int, default = None] The size of the random split with which the eigenvalues are computed.
If None the estimator searches over values suggested by Lam (2016) in Equation (4.8) and
selects the best according to Equation (4.7).

M [int, default = 50] The number of permutations. Lam (2016) suggests 50.

Returns

opt_Sigma_hat [numpy.ndarray, shape = (p, p)] The NERCOME covariance matrix estimate.

Notes

A very different approach to the analytic formulas of nonlinear shrinkage is pursued by Abadir et al 2014.
These authors propose a nonparametric estimator based on a sample splitting scheme. They split the data
into two pieces and exploit the independence of observations across the splits to regularize the eigenvalues.
Lam (2016) builds on their results and proposes a nonparametric estimator that is asymptotically optimal even
if the population covariance matrix Σ has a factor structure. In the case of low-rank strong factor models,
the assumption that each observation can be written as x𝑡 = Σ1/2z𝑡 for 𝑡 = 1, . . . , 𝑛, where each z𝑡 is a
𝑝 × 1 vector of independent and identically distributed random variables 𝑧𝑖𝑡, for 𝑖 = 1, . . . , 𝑝, with zero-
mean and unit variance, is violated since the covariance matrix is singular and its Cholesky decomposition
does not exist. Both linear_shrinkage() and nonlinear_shrinkage() are build on this assump-
tion are no longer optimal if it is not fulfilled. The proposed nonparametric eigenvalue-regularized covari-
ance matrix estimator (NERCOME) starts by splitting the data into two pieces of size 𝑛1 and 𝑛2 = 𝑛 − 𝑛1.
It is assumed that the observations are i.i.d with finite fourth moments such that the statistics computed in
the different splits are likewise independent of each other. The sample covariance matrix of the first parti-
tion is defined as S𝑛1

:= X𝑛1
X′

𝑛1
/𝑛1. Its spectral decomposition is given by S𝑛1

= U𝑛1
Λ𝑛1

U′
𝑛1
, where

Λ𝑛1
is a diagonal matrix, whose elements are the eigenvalues 𝜆𝑛1

= (𝜆𝑛1,1, . . . , 𝜆𝑛1,𝑝) and an orthogonal
matrix U𝑛1

, whose columns [u𝑛1,1 . . .u𝑛1,𝑝] are the corresponding eigenvectors. Analogously, the sample
covariance matrix of the second partition is defined by S𝑛2 := X𝑛2X

′
𝑛2
/𝑛2. Theorem 1 of Lam (2016)

shows that \begin{equation} \widetilde{\mathbf{d}}_{n_1}^{(\text{NERCOME})}= \operatorname{diag}(
\mathbf{U}_{n_1}^{\prime} \mathbf{S}_{n_2} \mathbf{U}_{n_1}) \end{equation} is asymptotically the
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same as the finite-sample optimal rotation equivariant d*
𝑛1

= U′
𝑛1
ΣU𝑛1 based on the section 𝑛1. The pro-

posed estimator is thus of the rotation equivariant form, where the elements of the diagonal matrix are chosen
according to ̃︀d(NERCOME)

𝑛1 . In other words the estimator is given by \begin{equation} \widetilde{\mathbf{S}}_{
n_1}^{(\text{NERCOME})}:= \sum_{i=1}^{p}\widetilde{\mathbf{d}}_{n_1}^{(\text{NERCOME})} \cdot
\mathbf{u}_{n_1, i} \mathbf{u}_{n_1, i}^{\prime} \end{equation} The author shows that this estimator
is asymptotically optimal with respect to the Frobenius loss even under factor structure. However, it
uses the sample data inefficiently since only one section is utilized for the calculation of each compo-
nent. The natural extension is to permute the data and bisect it anew. With these sections an esti-
mate is computed according to ̃︀S(NERCOME)

𝑛1 . This is done 𝑀 times and the covariance matrix estimates
are averaged: \begin{equation} \widetilde{\mathbf{S}}_{n_1, M}^{(\text{NERCOME})}:=\frac{1}{M}
\sum_{j=1}^{M}\widetilde{\mathbf{S}}_{n_1, j}^{(\text{NERCOME})}. \end{equation} The estimator de-
pends on two tuning parameters, 𝑀 and 𝑛1. Higher 𝑀 give more accurate results but the computational cost
grows as well. The author suggests that more than 50 iterations are generally not needed for satisfactory results.
𝑛1 is subject to regularity conditions. The author proposes to search over the contenders \begin{equation}
n_1=\left[2 n^{1 / 2}, 0.2 n, 0.4 n, 0.6 n, 0.8 n, n-2.5 n^{1 / 2}, n-1.5 n^{1 / 2}\right] \end{equation}
and select the one that minimizes the following criterion inspired by Bickel (2008) \begin{equation}
g(n_1)=\left\|\frac{1}{M} \sum_{j=1}^{M} \left(\widetilde{\mathbf{S}}_{n_1, j}^{(\text{NERCOME})} -
\mathbf{S}_{n_2, j}\right)\right\|_{F}^{2}. \end{equation}

References

Abadir, K. M., Distaso, W. and Zikeˇs, F. (2014). Design-free estimation of variance matrices, Journal of
Econometrics 181(2): 165–180.

Bickel, P. J. and Levina, E. (2008). Regularized estimation of large covariance matrices, The Annals of Statistics
36(1): 199–227.

Lam, C. (2016). Nonparametric eigenvalue-regularized precision or covariance matrix estimator, The Annals of
Statistics 44(3): 928–953.

Examples

>>> np.random.seed(0)
>>> n = 13
>>> p = 5
>>> X = np.random.multivariate_normal(np.zeros(p), np.eye(p), n)
>>> cov = nercome(X.T, m=5, M=10)
>>> cov
array([[ 1.34226722, 0.09693429, 0.00233125, 0.17717658, -0.01643898],

[ 0.09693429, 1.0508423 , 0.10112215, -0.22908987, -0.04914651],
[ 0.00233125, 0.10112215, 1.0731665 , -0.02959628, 0.38652859],
[ 0.17717658, -0.22908987, -0.02959628, 1.10753766, 0.1807373 ],
[-0.01643898, -0.04914651, 0.38652859, 0.1807373 , 0.88832791]])
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nerive

hd.nerive(tick_series_list, stp=None, estimator=None, \*\*kwargs)
The nonparametric eigenvalue-regularized integrated covariance matrix estimator (NERIVE) of Lam and Feng
(2018). This estimator is similar to the nercome() estimator extended into the hight frequency setting.

Parameters

tick_series_list [list of pd.Series] Each pd.Series contains ticks of one asset with datetime in-
dex.

K [numpy.ndarray, default= None] An array of sclales. If None all scales 𝑖 = 1, ...,𝑀 are
used, where M is chosen 𝑀 = 𝑛1/2 acccording to Eqn (34) of Zhang (2006).

stp [array-like of datetime.time() objects, default = [9:30, 12:45, 16:00]] The split time points.

estimator [function, default = None] An integrated covariance estimator taking
tick_series_lists as the first argument. If None the msrc_pairwise() is
used.

**kwargs [miscellaneous] Keyword arguments of the estimator.

Returns

out [numpy.ndarray, 2d] The NERIVE estimate of the integrated covariance matrix.

Notes

The nonparametric eigenvalue-regularized integrated covariance matrix estimator (NERIVE) proposed
by Lam and Feng (2018) splits the sample into 𝐿 partitions. The split points are denoted by $$
0=\widetilde{\tau}_{0}<\widetilde{\tau}_{1}<\cdots<\widetilde{\tau}_{L}=T $$ and the 𝑙th partition
is given by (̃︀𝜏𝑙−1, ̃︀𝜏𝑙] . The integrated covariance estimator for the 𝑙th partition is \begin{equation}
\widehat{\mathbf{\Sigma}}_l=\mathbf{U}_{-l} \operatorname{diag}\left(\mathbf{U}_{-l}’ \wide-
tilde{\mathbf{\Sigma}}_l \mathbf{U}_{-l}\right) \mathbf{U}_{-l}’ \end{equation} where U−𝑙 is an orthogo-
nal matrix depending on all observations over the full interval [0, 𝑇 ] except the 𝑙th partition. The NERIVE esti-
mator over the full interval [0, 𝑇 ] is given by \begin{equation} \widehat{\mathbf{\Sigma}}=\sum_{l=1}^{L}
\widehat{\mathbf{\Sigma}}_l= \sum_{l=1}^{L} \mathbf{U}_{-l} \operatorname{diag}\left(\mathbf{U}_{-
l}’ \widetilde{\mathbf{\Sigma}}_l \mathbf{U}_{-l}\right) \mathbf{U}_{-l}’. \end{equation} ̃︀Σ is an
integrated covariance estimator that corrects for asynchronicity and microstructure noise, e.g., one of hf. Lam
and Feng (2018) choose the TSRC for the sake of tractablility in the proofs. Importantly, NERIVE does not
assume i.i.d. observations but weak dependence between the log-price process and the microstructure noise
process within partition 𝑙, and weak serial dependence of microstructure noise vectors, given ℱ−𝑙. Similar to
NERCOME, NERIVE allows for the presence of pervasive factors as long as they persist between refresh times.

Warning: NERIVE splits the data into smaller subsamples. Estimator parameters that depend on the
sample size must be adjusted. Further, the price process must be preprocessed to have zero mean return over
the full sample.
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References

Lam, C. and Feng, P. (2018). A nonparametric eigenvalue-regularized integrated covariance matrix estimator
for asset return data, Journal of Econometrics 206(1): 226–257.

nonlinear_shrinkage

hd.nonlinear_shrinkage(X)
Compute the shrunk sample covariance matrix with the analytic nonlinear shrinkage formula of
Ledoit and Wolf (2018). This estimator shrinks the sample sample covariance matrix with
_nonlinear_shrinkage_cov(). The code has been adapted from the Matlab implementation provided
by the authors in Appendix D.

Parameters

x [numpy.ndarray, shape = (p, n)] A sample of synchronized log-returns.

Returns

sigmatilde [numpy.ndarray, shape = (p, p)] The nonlinearly shrunk covariance matrix estimate.

Notes

The idea of shrinkage covariance estimators is further developed by Ledoit and Wolf (2012) who argue that
given a sample of size 𝒪(𝑝2), estimating 𝒪(1) parameters, as in linear shrinkage, is precise but too restrictive,
while estimating 𝒪(𝑝2) parameters, as in the the sample covariance matrix, is impossible. They argue that the
optimal number of parameters to estimate is 𝒪(𝑝). Their proposed non-linear shrinkage estimator uses exactly
𝑝 parameters, one for each eigenvalue, to regularize each eigenvalue with a specific shrinkage intensity indi-
vidually. Linear shrinkage, in contrast, is restricted by a single shrinkage intensity with which all eigenvalues
are shrunk uniformly. Nonlinear shrinkage enables a nonlinear fit of the shrunk eigenvalues, which is appro-
priate when there are clusters of eigenvalues. In this case, it may be optimal to pull a small eigenvalue (i.e.,
an eigenvalue that is below the grand mean) further downwards and hence further away from the grand mean.
Linear shrinkage, in contrast, always pulls a small eigenvalue upwards. Ledoit and Wolf (2018) find an analytic
formula based on the Hilbert transform that nonlinearly shrinks eigenvalues asymptotically optimally with re-
spect to the MV-loss function (as well as the quadratic Frobenius loss). The shrinkage function via the Hilbert
transform can be interpreted as a local attractor. Much like the gravitational field extended into space by massive
objects, eigenvalue clusters exert an attraction force that increases with the mass (i.e. the number of eigenvalues
in the cluster) and decreases with the distance. If an eigenvalue 𝜆𝑖 has many neighboring eigenvalues slightly
smaller than itself, the exerted force on 𝜆𝑖 will have large magnitude and downward direction. If 𝜆𝑖 has many
neighboring eigenvalues slightly larger than itself, the exerted force on 𝜆𝑖 will also have large magnitude but
upward direction. If the neighboring eigenvalues are much larger or much smaller than 𝜆𝑖 the magnitude of
the force on 𝜆𝑖 will be small. The nonlinear effect this has on the shrunk eigenvalues can be seen in the figure
below. The linearly shrunk eigenvalues, on the other hand, follow a line. Both approaches reduce the dispersion
of eigenvalues and hence deserve the name shrinkage.
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The authors assume that there exists a 𝑛 × 𝑝 matrix Z of i.i.d. random variables with mean zero, variance
one, and finite 16th moment such that the matrix of observations X := ZΣ1/2. Neither Σ1/2 nor Z are
observed on their own. This assumption might not be satisfied if the data generating process is a factor
model. Use nercome() or nerive() if you believe the assumption is in your dataset violated. Theo-
rem 3.1 of Ledoit and Wolf (2018) states that under their assumptions and general asymptotics the MV-loss
is minimized by a rotation equivariant covariance estimator, where the elements of the diagonal matrix are
\begin{equation} \label{eqn: oracle diag} \widehat{\mathbf{\delta}}^{(o, nl)}:=\left(\widehat{d}_{1}^{(o,
nl)}, \ldots, \widetilde{d}_{p}^{(o, nl)}\right):=\left(d^{(o, nl)}\left( \lambda_{1}\right), \ldots, d^{(o,
nl)}\left(\lambda_{p}\right)\right). \end{equation} 𝑑(𝑜,𝑛𝑙)(𝑥) denotes the oracle nonlinear shrinkage function
and it is defined as \begin{equation} \forall x \in \operatorname{Supp}(F) \quad d^{(o, nl)}(x):=\frac{x}{ [\pi c
x f(x)]^{2}+\left[1-c-\pi c x \mathcal{H}_{f}(x)\right]^{2}}, \end{equation} where ℋ𝑔(𝑥) is the Hilbert trans-
form. As per Definition 2 of Ledoit and Wolf (2018) it is defined as \begin{equation} \forall x \in \mathbb{R}
\quad \mathcal{H}_{g}(x):=\frac{1}{\pi} P V \int_{-\infty}^{+\infty} g(t) \frac{d t}{t-x}, \end{equation}
which uses the Cauchy Principal Value, denoted as 𝑃𝑉 to evaluate the singular integral in the follow-
ing way \begin{equation} P V \int_{-\infty}^{+\infty} g(t) \frac{d t}{t-x}:=\lim _{\varepsilon \rightarrow
0^{+}}\left[\int_{-\infty}^{x-\varepsilon} g(t) \frac{d t} {t-x}+\int_{x+\varepsilon}^{+\infty} g(t) \frac{d t}{t-
x}\right]. \end{equation} It is an oracle estimator due to the dependence on the limiting sample spectral density
𝑓 , its Hilbert transform ℋ𝑓 , and the limiting concentration ratio 𝑐, which are all unobservable. Nevertheless,
it represents progress compared to hd.fsopt(), since it no longer depends on the full population covari-
ance matrix, Σ, but only on its eigenvalues. This reduces the number of parameters to be estimated from
the impossible 𝒪(𝑝2) to the manageable 𝒪(𝑝). To make the estimator feasible, unobserved quantities have to
be replaced by statistics. A consistent estimator for the limiting concentration 𝑐 is the sample concentration
𝑐𝑛 = 𝑝/𝑛. For the limiting sample spectral density 𝑓 , the authors propose a kernel estimator. This is neces-
sary, even though 𝐹𝑛

a.s→ 𝐹 , since 𝐹𝑛 is discontinuous at every 𝜆𝑖 and thus its derivative 𝑓𝑛, which would’ve
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been the natural estimator for 𝑓 , does not exist there. A kernel density estimator is a non-parametric estimator
of the probability density function of a random variable. In kernel density estimation data from a finite sam-
ple is smoothed with a non-negative function 𝐾, called the kernel, and a smoothing parameter ℎ, called the
bandwidth, to make inferences about the population density. A kernel estimator is of the form \begin{equation}
\widehat{f}_{h}(x)=\frac{1}{N} \sum_{i=1}^{N} K_{h}\left(x-x_{i}\right)= \frac{1}{N h} \sum_{i=1}^{N}
K\left(\frac{x-x_{i}}{h}\right). \end{equation}

The chosen kernel estimator for the limiting sample spectral density is based on the Epanechnikov kernel with
a variable bandwidth, proportional to the eigenvalues, ℎ𝑖 := 𝜆𝑖ℎ, for 𝑖 = 1, . . . , 𝑝, where the global bandwidth
is set to ℎ := 𝑛−1/3. The reasoning behind the variable bandwidth choice can be intuited from the figure below,
which shows that the support of the limiting sample spectral distribution is approximately proportional to the
eigenvalue.

The Epanechnikov kernel is defined as \begin{equation} \forall x \in \mathbb{R} \quad \kappa^{(E)}(x):=
\frac{3}{4 \sqrt{5}}\left[1-\frac{x^{2}}{5}\right]^{+}. \end{equation} The kernel estimators of 𝑓
and ℋ are thus \begin{equation} \forall x \in \mathbb{R} \quad \widetilde{f}_{n}(x):= \frac{1}{p}
\sum_{i=1}^{p} \frac{1}{h_{i}} \kappa^{(E)} \left(\frac{x-\lambda_{i}}{h_{i}}\right)=\frac{1}{p}
\sum_{i=1}^{p} \frac{1}{\lambda_{i} h} \kappa^{(E)}\left(\frac{x-\lambda_{i}}{\lambda_{i} h}\right)
\end{equation} and \begin{equation} \mathcal{H}_{\tilde{f}_{n}}(x):=\frac{1}{p} \sum_{i=1}^{p}
\frac{1}{h_{i}} \mathcal{H}_{k}\left(\frac{x-\lambda_{i}}{h_{i}}\right)=\frac{1}{p} \sum_{i=1}^{p}
\frac{1}{\lambda_{i} h} \mathcal{H}_{k}\left(\frac{x-\lambda_{i}} {\lambda_{i} h}\right)=\frac{1}{\pi}
PV \int \frac{\widetilde{f}_{n}(t)}{x-t} d t, \end{equation} respectively. The feasible nonlinear shrinkage
estimator is of rotation equivariant form, where the elements of the diagonal matrix are \begin{equation}
\forall i=1, \ldots, p \quad \widetilde{d}_{i}:=\frac{\lambda_{i}} {\left[\pi \frac{p}{n} \lambda_{i}
\widetilde{f}_{n} \left(\lambda_{i}\right)\right]^{2}+\left[1-\frac{p}{n}-\pi \frac{p}{n} \lambda_{i}
\mathcal{H}_{\tilde{f}_{n}}\left(\lambda_{i} \right)\right]^{2}} \end{equation} In other words, the feasible
nonlinear shrinkage estimator is \begin{equation} \widetilde{\mathbf{S}}:=\sum_{i=1}^{p} \widetilde{d}_{i}
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\mathbf{u}_{i} \mathbf{u}_{i}^{\prime}. \end{equation}

References

Ledoit, O. and Wolf, M. (2018). Analytical nonlinear shrinkage of large-dimensional covariance matrices,
University of Zurich, Department of Economics, Working Paper (264).

Examples

>>> np.random.seed(0)
>>> n = 13
>>> p = 6
>>> X = np.random.multivariate_normal(np.zeros(p), np.eye(p), n)
>>> nonlinear_shrinkage(X.T)
array([[ 1.50231589e+00, -2.49140874e-01, 2.68050353e-01,

2.69052962e-01, 3.42958216e-01, -1.51487901e-02],
[-2.49140874e-01, 1.05011440e+00, -1.20681859e-03,
-1.25414579e-01, -1.81604754e-01, 4.38535891e-02],

[ 2.68050353e-01, -1.20681859e-03, 1.02797073e+00,
1.19235516e-01, 1.03335603e-01, 8.58533018e-02],

[ 2.69052962e-01, -1.25414579e-01, 1.19235516e-01,
1.03290514e+00, 2.18096913e-01, 5.63011351e-02],

[ 3.42958216e-01, -1.81604754e-01, 1.03335603e-01,
2.18096913e-01, 1.22086494e+00, 1.07255380e-01],

[-1.51487901e-02, 4.38535891e-02, 8.58533018e-02,
5.63011351e-02, 1.07255380e-01, 1.07710975e+00]])

to_corr

hd.to_corr(cov)
Convert a covariance matrix to a correlation matrix.

Parameters

cov [numpy.ndarray, 2d, float] A covariance matrix.

Returns

out [numpy.ndarray, 2d] A correlation matrix

Examples

>>> cov = np.array([[2., 1.],[1., 2.]])
>>> to_corr(cov)
array([[1. , 0.5],

[0.5, 1. ]])
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The need for regularization

The sample covariance matrix and especially its inverse, the precision matrix, have bad properties in high dimensions,
i.e., when the concentration ratio 𝑐𝑛 = 𝑝

𝑛 is not a small number. Then (1) the sample covariance matrix is estimated
with a lot of noise since 𝒪(𝑝2) parameters have to be estimated with 𝑝𝑛 = 𝒪(𝑝2) observations, if 𝑛 is of the same
order of magnitude as 𝑝 . And (2), if the first principal component of returns explains a large part of their variance,
the condition number of the population covariance matrix, Σ, is already high. A high concentration ratio increases the
dispersion of sample eigenvalues above and beyond the dispersion of population eigenvalues, increasing the condition
number further and leading to a very ill-conditioned sample covariance matrix.

Mathematically, as illustrated by Engle et al. 2019, the last point can be seen as follows. Define the population
and sample spectral distribution, i.e., the cross section cumulative distribution function that returns the proportion of
population and sample eigenvalues smaller than 𝑥, respectively, as

$$\begin{aligned} &H_{n}(x):=\frac{1}{p} \sum_{i=1}^{p} \mathbf{1}_{\left\{x \leq \tau_{i, T}\right\} } , \forall x
\in \mathbb{R}, \ &F_{n}(x):=\frac{1}{p} \sum_{i=1}^{p} \mathbf{1}_{\left\{x \leq \lambda_{i, T}\right\}}, \forall
x \in \mathbb{R}. \end{aligned}$$ Under general asymptotics and its standard assumptions, 𝑝 is a function of 𝑛
and both 𝑝 and 𝑛 – not just 𝑛 – go to infinity. Then, according to Silverstein (1995), $$F_{n}(x) \stackrel{\text
{ a.s }}{\longrightarrow} F(x), \quad$$ where 𝐹 denotes the nonrandom limiting spectral distribution. From the
equality \begin{equation} \int_{-\infty}^{+\infty} x^{2} d F(x)=\int_{-\infty}^{+\infty} x^{2} d H(x)+c\left[\int_{-
\infty}^{+\infty} x d H(x)\right]^{2} \end{equation} it can be seen that if the limiting concentration ratio 𝑐 is greater
than zero, the sample eigenvalue dispersion is inflated. The mean of the sample eigenvalues, however, is unbiased
\begin{equation} \label{eqn: eigenvalue_mean} \int_{-\infty}^{+\infty} x d F(x)=\int_{-\infty}^{+\infty} x d H(x).
\end{equation}

The distortion of extreme eigenvalues is very large for high concentrations. But even for relatively small 𝑐, the
eigenvalue dispersion can be high enough such that regularization is necessary to ameliorate instability. The
mathematical intuition behind this can be seen from the Marchenko-Pastur, which states that the limiting spec-
trum of the sample covariance matrix S = XX′/𝑛 of independent and identically distributed 𝑝-dimensional ran-
dom vectors X = (x1, . . . ,x𝑝)

′ with mean 0 and covariance matrix Σ = 𝜎2I𝑝, has density \begin{equation}
f_{c}(x)=\left\{\begin{array}{ll} \frac{1}{2 \pi x c \sigma^{2}} \sqrt{(b-x)(x-a)}, & a \leq x \leq b \ 0, & \text { other-
wise, } \end{array}\right. \end{equation} where the smallest and the largest eigenvalues are given by 𝑎 = 𝜎2(1−

√
𝑐)2

and 𝑏 = 𝜎2(1 +
√
𝑐)2, respectively, as 𝑝, 𝑛→ ∞ with 𝑝/𝑛→ 𝑐 > 0. To illustrate, say the interest lies on estimating a

covariance matrix for 1000 stocks on daily data and suppose finite sample behavior of eigenvalues is reasonably well
approximated by the Marchenko-Pastur law. Using a rolling window of anything less than approximately 4 years of
daily returns results in a singular covariance matrix. Widening the window to include 8 years of data, the concen-
tration ratio would be approximately 𝑐𝑛 = 1/2. Plugging this number into the equations for the smallest and largest
eigenvalues, it can be seen that they are, respectively, 91% smaller and 191% larger than the population eigenvalues,
which are equal to 𝜎2. Even for an extremely wide window of 40 years, the eigenvalues would still be underestimated
by 53% for the smallest, and overestimated by 73% for the largest. To reduce the overdispersion enough such that
the covariance matrix becomes well-conditioned, such a wide window would be necessary that inaccuracies due to
non-stationarity would dominate, if the data are even available. Empirically, the cross-section of stock returns exhibits
correlation, hence Σ ̸= 𝜎2I𝑝. Ait-Sahalia and Xiu (2017), for example, find a low rank factor structure plus a sparse
industry-clustered covariance matrix of residuals, which may exacerbate the instability of the precision matrix since
the eigenvalues of the population covariance matrix are already highly dispersed.

The solution to (1) is to reduce the number of parameters by identifying a small number of factors that explain a
large proportion of the variance and then estimating the factor loading of each stock on those factors, which reduces
the number of parameters considerably if 𝑝 is large. The solution to (2) is to shrink the covariance matrix towards a
shrinkage target which has a stable structure such as the identity matrix. This has the effect of pulling eigenvalues
of the sample covariance matrix towards their grand mean, which is unbiased, while keeping the sample eigenvectors
unaltered. Estimators that retain the original eigenvectors while seeking better properties through modification of the
eigenvalues are called rotation equivariant. The result is a reduction of dispersion of sample eigenvalues and thus the
condition number. Since overfitting is known to increase the dispersion of sample eigenvalues, shrinking them has the
effect of regularization.
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Rotation equivariance

The literature of eigenstructure regularized covariance estimation for portfolio allocation is predominantly
focused on rotation equivariant estimators. To define the estimator consider the sample covariance matrix
S𝑛 := X𝑛X

′
𝑛/𝑛 based on a sample of 𝑛 i.i.d. observations X𝑛 with zero-mean. For the sake of readability,

the sample suffix is suppressed in the following text unless it is not clear from the context that the quantity
depends on the sample. According to the spectral theorem the sample covariance matrix can be decomposed
into S = UΛU′, where Λ is a diagonal matrix, whose elements are the eigenvalues 𝜆 = (𝜆1, . . . , 𝜆𝑝)
and an orthogonal matrix U, whose columns [u1 . . .u𝑝] are the corresponding eigenvectors. A rotation
equivariant estimator of the population covariance matrix Σ is of the form \begin{equation} \label{eqn: re}
\widehat{\mathbf{\Sigma}}:=\mathbf{U}\widehat{\mathbf{\Delta}}\mathbf{U}^{\prime}=\sum_{i=1}^{p}
\widehat{\delta}_{i} \cdot \mathbf{u}_{ i} \mathbf{u}_{i}^{\prime}, \end{equation} where ̂︀Δ is a di-
agonal matrix with elements ̂︀𝛿. The infeasible finite-sample optimal rotation equivariant estimator, hd.
fsopt(), choses the elements of the diagonal matrix as \begin{equation} \label{eqn: optimal re}
\mathbf{d}^{*}:=\left(d_{1}^{*}, \ldots, d_{p}^{*}\right):=\left(\mathbf{u}_{1}^{\prime} \mathbf{\Sigma}
\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}^{\prime} \mathbf{\Sigma} \mathbf{u}_{p}\right). \end{equation} This
estimator is an oracle since it depends on the unobservable population covariance matrix. In order to be feasible,̂︀Δ has to be estimated from data. The hd.linear_shrinkage(), and the hd.nonlinear_shrinkage()
estimator, estimate the elements of ̂︀Δ, i.e., ̂︀𝛿 =

(︁̂︀𝛿1, . . . , ̂︀𝛿𝑝)︁ ∈ (0,+∞)𝑝, as a function of 𝜆𝑛. These two approaches
differ in how many parameters this function takes. They both are elements of the rotation equivariant class, though.
Within this framework, originally due to Stein (1986), lecture 4, rotations of the original data are deemed irrelevant
for covariance estimation. Hence, the rotation equivariant covariance estimate based on the rotated data equals the
rotation of the covariance estimate based on the original data, i.e., ̂︀Σ (XW) = W′ ̂︀Σ (X)W, where W is some
𝑝-dimensional orthogonal matrix. This characteristic distinguishes the class of rotation equivariant estimators from
regularization schemes based on sparsity, since a change of basis does generally not preserve the sparse structure of
the matrix.
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2.1.3 sim Module

Functions

animate_heatmap(data) Visualize an evolving series of matrices over time.
garch_11(n, sigma_sq_0, mu, alpha, beta, omega) Generate GARCH(1, 1) log-returns of size n.
simple(size, corr_matrix, spec, liquidity, gamma) Generate a simple p-dimensional GARCH(1,1) log-

price process with microstructure noise and non-
synchronous observation times.

animate_heatmap

sim.animate_heatmap(data)
Visualize an evolving series of matrices over time. This function is useful for visualizing a realization of condi-
tional covariance matricies from a Universe simulation.

Parameters

data [list] A list of 2d numpy.ndarrays.

Returns

None

garch_11

sim.garch_11(n, sigma_sq_0, mu, alpha, beta, omega)
Generate GARCH(1, 1) log-returns of size n. This function is accelerated via JIT with Numba.

Parameters

n [int] The length of the wished time series.

sigma_sq_0 [float > 0] The variance starting value.

mu [float:] The drift of log-returns.

alpha [float >= 0] The volatility shock parameter. A higher value will lead to larger spikes in
volatility. A.k.a short-term persistence.

beta [float >= 0] The volatility persistence parameter. A larger value will result in stronger
persistence. A.k.a long-term persistence.

omega [float > 0] The variance constant. A higher value results in a higher mean variance.

Returns

r [numpy.ndarray] The GARCH log-returns time series.

sigma_sq [numpy.ndarray] The resulting variance time series with which each log-return was
generated.
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Notes

In general, the conditional variance of a GARCH(p,q) model is given by

𝜎2
𝑡 = 𝜔 +

𝑞∑︁
𝑖=1

𝛼𝑖𝜀
2
𝑡−𝑖 +

𝑝∑︁
𝑗=1

𝛽𝑗𝜎
2
𝑡−𝑗 .

The unconditional variance is given by

𝜎2 =
𝜔

1 −
∑︀𝑞

𝑖=1 𝛼𝑖 −
∑︀𝑝

𝑗=1 𝛽𝑗
.

Here, 𝑝 = 𝑞 = 1, and 𝜖𝑡 ∼ 𝒩 (0, 1)

simple

sim.simple(size, corr_matrix, spec, liquidity, gamma)
Generate a simple p-dimensional GARCH(1,1) log-price process with microstructure noise and non-
synchronous observation times.

Parameters

size [int] The number of ‘continous’ log-prices.

corr_matrix [numpy.ndarray, shape = (p, p)] The correlation matrix of log-returns.

spec [list]

The garch specification. [sigma_sq_0, mu, alpha, beta, omega]

liquidity [float] A value between 0 and 1 that describes liquidity. A value of 1 means that the
probability of observation is 100% each minute. 0.5 means that there is a 50% probability
of observing a price each minute.

gamma [float >=0] The microstructure noise will be zero-mean Gaussian with variance
𝛾2𝑣𝑎𝑟(𝑟), where 𝑣𝑎𝑟(𝑟) is the variance of the underlying true return process. This noise
is be added to the price.

Returns

price [numpy.ndarray, shape = (size, p)] The p-dimensional price time series.

Classes

Universe(feature_beta, factor_garch_spec, . . . ) The universe is a specification from which simulated re-
alizations can be sampled.
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Universe

class sim.Universe(feature_beta, factor_garch_spec, industry_garch_spec, resid_garch_spec, fac-
tor_loadings, industry_loadings, liquidity=0.5, gamma=2, freq='m')

Bases: object

The universe is a specification from which simulated realizations can be sampled. Stocks follow a factor model,
they belong to industries and have an idiosyncratic component. Stocks are predictable by a single feature.

Attributes

feature_beta [float] The true coefficient.

factor_garch_spec [list] The garch specification for factor returns. [sigma_sq_0, mu,
alpha, beta, omega]

industry_garch_spec [list] The garch specification for industry returns. [sigma_sq_0,
mu, alpha, beta, omega]

resid_garch_spec [list] The garch specification for residual returns. [sigma_sq_0, mu,
alpha, beta, omega]

factor_loadings [numpy.ndarray] An array with factor loadings for each stock and factor. dim
= n_stocks x n_factors

industry_loadings [numpy.ndarray] An array with industry loadings for each stock and indus-
try. dim = n_stocks x n_industry This is usually a sparse matrix. One stock loads typically
on one or two industries. A good number of industries is 10 to 20.

liquidity [float] A value between 0 and 1 that describes liquidity. A value of 1 means that the
probability of observation is 100% each minute. 0.5 means that there is a 50% probability
of observing a price each minute.

gamma [float >=0] The microstructure noise will be zero-mean Gaussian with variance
𝛾2𝑣𝑎𝑟(𝑟), where 𝑣𝑎𝑟(𝑟) is the variance of the underlying true return process. This noise
is be added to the price.

freq [str, 's' or 'm'.] The granularity of the discretized continous price process.

Methods Summary

cond_cov(self) Compute the daily coditional integrated covariance
matrix of stock returns within regular market hours
in the universe from a realized universe simulation.

simulate(self, n_days) The price process of each stock is continous but sam-
pled at random times and with Gaussian microstruc-
ture noise.

uncond_cov(self) Compute the uncoditional covariance of stock re-
turns in the universe from a universe specification.

uncond_var(spec) Compute the uncoditional variance from a
GARCH(1,1) specification.
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Methods Documentation

cond_cov(self)
Compute the daily coditional integrated covariance matrix of stock returns within regular market hours in
the universe from a realized universe simulation.

Returns

list A list containing the conditional integrated covariance matrices of each day.

simulate(self, n_days)
The price process of each stock is continous but sampled at random times and with Gaussian microstruc-
ture noise. Importantly, the observation times are not synchronous across stocks. Observation times are
restricted to market hours (9:30, 16:00) but the underlying process continues over night so that there are
close-to-open gaps.

Parameters

n_days [int] The number of days of the sample path.

Returns

list of pd.DataFrame A list with two elements, the prices of each stock in a pd.DataFrame
and the feature of each stock in a pd.DataFrame with datetime_index.

uncond_cov(self)
Compute the uncoditional covariance of stock returns in the universe from a universe specification.

Returns

numpy.ndarray The unconditional covariance matrix.

static uncond_var(spec)
Compute the uncoditional variance from a GARCH(1,1) specification.

Parameters

spec [list]

The garch specification. [sigma_sq_0, mu, alpha, beta, omega]

Returns

float The unconditional variance.

2.1.4 loss Module

This module provides loss functions frequently encountered in the literature on high dimensional covariance matrix
estimation.

Functions

loss_fr(sigma_hat, sigma) Squared Frobenius norm scaled by 1/p.
loss_mv(sigma_hat, sigma) The minimum variance loss function of Ledoit and Wolf

(2018).
marchenko_pastur(x, c, sigma_sq) The Marchenko-Pastur distribution.
prial(S_list, sigma_hat_list, sigma[, loss_func]) The percentage relative improvement in average loss

(PRIAL) over the sample covariance matrix.

2.1. hfhd 35



hfhd Documentation

loss_fr

loss.loss_fr(sigma_hat, sigma)
Squared Frobenius norm scaled by 1/p. Same as np.linalg.norm(sigma_hat - sigma,
'fro')**2 *1/p.

Parameters

sigma_hat [numpy.ndarray] The covariance matrix estimate using the estimator of interest.

sigma [numpy.ndarray] The (true) population covariance matrix.

Returns

out [float] The minimum variance loss.

Notes

The loss function is given by:

ℒFR
𝑛

(︁̂︀Σ𝑛,Σ𝑛

)︁
:=

1

𝑝
Tr

[︂(︁̂︀Σ𝑛 − Σ𝑛

)︁2
]︂

loss_mv

loss.loss_mv(sigma_hat, sigma)
The minimum variance loss function of Ledoit and Wolf (2018).

Parameters

sigma_hat [numpy.ndarray] The covariance matrix estimate using the estimator of interest.

sigma [numpy.ndarray] The (true) population covariance matrix.

Returns

out [float] The minimum variance loss.

Notes

The minimum variance (MV)-loss function is proposed by Engle et al. (2019) as a loss function that is appropri-
ate for covariance matrix estimator evaluation for the problem of minimum variance portfolio allocations under
a linear constraint and large-dimensional asymptotic theory.

The loss function is given by:

ℒMV
𝑛

(︁̂︀Σ𝑛,Σ𝑛

)︁
:=

Tr
(︁̂︀Σ−1

𝑛 Σ𝑛
̂︀Σ−1
𝑛

)︁
/𝑝[︁

Tr
(︁̂︀Σ−1

𝑛

)︁
/𝑝

]︁2 − 1

Tr
(︀
Σ−1

𝑛

)︀
/𝑝
.

It can be interpreted as the true variance of the minimum variance portfolio constructed from the estimated
covariance matrix.
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marchenko_pastur

loss.marchenko_pastur(x, c, sigma_sq)
The Marchenko-Pastur distribution. This is the pdf of eigenvalues of a sample covariance matrix estimate of the
true covariance matrix, which is a``sigma_sq`` scaled identity matrix. It depends on the concentration ratio c,
which is the ratio of the dimension divided by the number of observations.

Parameters

x [float] The value of the sample eigenvalue.

c [float] The concentration ratio. 𝑐 = 𝑝/𝑛.

sigma_sq [float] The value of population eigenvalues.

Returns

p [float] The value of the Marchenko-Pastur distribution at the sample eigenvalue x.

Notes

The Marchenko-Pastur law states that the limiting spectrum of the sample covariance matrix 𝑆 = 𝑋 ′𝑋/𝑛
of independent and identically distributed 𝑝-dimensional random vectors X = (𝑥1, . . . , 𝑥𝑛) with mean 0 and
covariance matrix Σ = 𝜎2I𝑝, has density \begin{equation} f_{c}(x)=\left\{\begin{array}{ll} \frac{1}{2 \pi x
c \sigma^{2}} \sqrt{(b-x)(x-a)}, & a \leq x \leq b \ 0, & \text { otherwise, } \end{array}\right. \end{equation}
where the smallest and the largest eigenvalues are given by 𝑎 = 𝜎2(1−

√
𝑐)2 and 𝑏 = 𝜎2(1+

√
𝑐)2, respectively,

as 𝑝, 𝑛→ ∞ with 𝑝/𝑛→ 𝑐 > 0.

References

Marchenko, V. A. and Pastur, L. A. (1967). Distribution of eigenvalues for some sets of random matrices,
Matematicheskii Sbornik 114(4): 507–536.

prial

loss.prial(S_list, sigma_hat_list, sigma, loss_func=None)
The percentage relative improvement in average loss (PRIAL) over the sample covariance matrix.

Parameters

S_list [list of numpy.ndarray] The sample covariance matrix.

sigma_hat_list [list of numpy.ndarray] The covariance matrix estimate using the estimator of
interest.

sigma [numpy.ndarray] The (true) population covariance matrix.

loss_func [function, defualt = None] The loss function. If None the minimum variance loss
function is used.

Returns

prial [float] The PRIAL.

2.1. hfhd 37



hfhd Documentation

Notes

The percentage relative improvement in average loss (PRIL) over the sample covariance matrix is given by:

PRIAL𝑛

(︁̂︀Σ𝑛

)︁
:=

E [ℒ𝑛 (𝑆𝑛,Σ𝑛)] − E
[︁
ℒ𝑛

(︁̂︀Σ𝑛,Σ𝑛

)︁]︁
E [ℒ𝑛 (𝑆𝑛,Σ𝑛)] − E [ℒ𝑛 (𝑆*

𝑛,Σ𝑛)]
× 100%
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